Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 274: 120862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975274

RESUMO

Smoke inhalation injury is associated with significant mortality and current therapies remain supportive. The purpose of our study was to identify proteins upregulated in the lung after smoke inhalation injury and develop peptide amphiphile nanofibers that target these proteins. We hypothesize that nanofibers targeted to angiotensin-converting enzyme or receptor for advanced glycation end products will localize to smoke-injured lungs. METHODS: Five targeting sequences were incorporated into peptide amphiphile monomers methodically to optimize nanofiber formation. Nanofiber formation was assessed by conventional transmission electron microscopy. Rats received 8 min of wood smoke. Levels of angiotensin-converting enzyme and receptor for advanced glycation end products were evaluated by immunofluorescence. Rats received the targeted nanofiber 23 h after injury via tail vein injection. Nanofiber localization was determined by fluorescence quantification. RESULTS: Peptide amphiphile purity (>95%) and nanofiber formation were confirmed. Target proteins were increased in smoke inhalation versus sham (p < 0.001). After smoke inhalation and injection of targeted nanofibers, we found a 10-fold increase in angiotensin-converting enzyme-targeted nanofiber localization to lung (p < 0.001) versus sham with minimal localization of non-targeted nanofiber (p < 0.001). CONCLUSIONS: We synthesized, characterized, and evaluated systemically delivered targeted nanofibers that localized to the site of smoke inhalation injury in vivo. Angiotensin-converting enzyme-targeted nanofibers serve as the foundation for developing a novel nanotherapeutic that treats smoke inhalation lung injury.


Assuntos
Nanofibras , Lesão por Inalação de Fumaça , Animais , Pulmão , Peptídeos , Ratos , Fumaça
2.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L471-L480, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697601

RESUMO

Smoke inhalation injury increases morbidity and mortality. Clinically relevant animal models are necessary for the continued investigation of the pathophysiology of inhalation injury and the development of therapeutics. The goal of our research was threefold: 1) to develop a reproducible survival model of smoke inhalation injury in rats that closely resembled our previous mouse model, 2) to validate the rat smoke inhalation injury model using a variety of laboratory techniques, and 3) to compare and contrast our rat model with both the well-established mouse model and previously published rat models to highlight our improvements on smoke delivery and lung injury. Mice and rats were anesthetized, intubated, and placed in custom-built smoke chambers to passively inhale woodchip-generated smoke. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected for confirmatory tests. Lung sections were hematoxylin and eosin stained, lung edema was assessed with wet-to-dry (W/D) ratio, and inflammatory cell infiltration and cytokine elevation were evaluated using flow cytometry, immunohistochemistry, and ELISA. We confirmed that our mouse and rat models of smoke inhalation injury mimic the injury seen after human burn inhalation injury with evidence of pulmonary edema, neutrophil infiltration, and inflammatory cytokine elevation. Interestingly, rats mounted a more severe immunological response compared with mice. In summary, we successfully validated a reliable and clinically translatable survival model of lung injury and immune response in rats and mice and characterized the extent of this injury. These animal models allow for the continued study of smoke inhalation pathophysiology to ultimately develop a better therapeutic.


Assuntos
Lesão Pulmonar Aguda/mortalidade , Líquido da Lavagem Broncoalveolar/imunologia , Lesão por Inalação de Fumaça/mortalidade , Fumaça/efeitos adversos , Lesão Pulmonar Aguda/imunologia , Animais , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos , Infiltração de Neutrófilos/fisiologia , Ratos , Lesão por Inalação de Fumaça/tratamento farmacológico , Lesão por Inalação de Fumaça/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...